

Jupiter 32 / 30

Application Note

Saving and retrieving configuration data to Flash

Selectable User Profiles

Related documents

- SiRF Binary Protocol reference manual MN000314
- NMEA reference manual MN000315

Saving and Retrieving Configuration Data to Flash

Overview

The current settings of the Jupiter 32/30 will be stored in Flash memory upon a command from the user. All Jupiter 32 modules support this feature. This feature is available on Jupiter 30 if it contains Flash software version 2.0 or later. On Jupiter 30 receivers that do not have the Write to Flash feature, the configuration will revert to default values on powerup unless the battery backup feature is energised. The Jupiter 30 Flash software can be upgraded to the current version using SiRFFlash.

All parameters are written as a set. The Write to Flash command needs to be issued each time a parameter changes or the changes will not become permanent.

The following parameters can be stored and retrieved:

- · Port A and B protocols
- · Port A and B baud rates and frame formats
- · NMEA per-message output rates and checksums
- · SiRF Binary debug and raw tracker data output
- · Datum
- · Altitude hold mode, source and default
- · Degraded mode and timeout
- · DR timeout
- · DOP mode and GDOP/PDOP/HDOP thresholds
- · Elevation navigation mask
- · Power navigation mask
- · Static navigation mode
- \cdot Track smoothing mode
- · TricklePower[™] mode, on time and interval
- · Push-to-Fix[™] mode, period, maximum off and acquisition times
- · DGPS source
- · SBAS default PRN

Writing to Flash

The module accepts NMEA or SiRF Binary messages. The protocols are defined in the *Navman NMEA Reference Manual* and the *SiRF Binary Protocol Reference Manual*. These documents describe the structure of the general commands.

NMEA Store to Flash Memory command

All relevant parameters are stored to Flash whenever the following NMEA sentence is received:

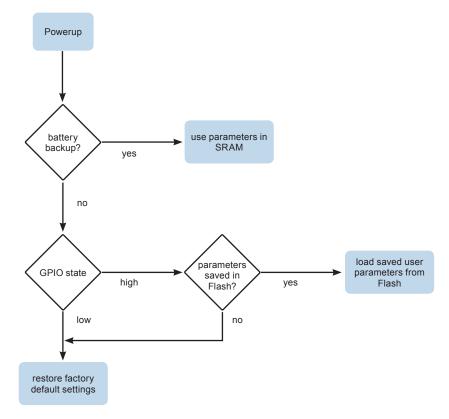
\$PSRF198[*CS] <cr><lf>

SiRF Binary Store to Flash Memory command

All relevant parameters are stored to Flash whenever the SiRF Binary message with Message ID 198 is received. The payload has a length of 1 byte.

A0 A2 00 01 C6 00 C6 B0 B3

Retrieving from Flash


At power-up, the unit will retrieve any configuration parameters stored in Flash and restore them as a set. Individual parameters can not be restored. Settings stored in battery backed memory are not over written.

To prevent parameters from being restored, drive the defaults pin a logic low.

Product	Defaults Pin
Jupiter 30	GPIO4 - Pin 25
Jupiter 32	GPIO15 Pad A5

Table 1 - Power-up action

LA000266A © 2007 Navman NZ Ltd. All rights reserved. Proprietary information and specifications subject to change without notice.

Figure 1 - Parameter Restoration

Logic State	Power-up Action	
high / floating	retrieves stored parameters in Flash on power-up	
low (grounded)	resets to factory defaults at power-up	

Table 2 - Actions based on signal state

Reverting to default settings

To restore the default settings, including deleting all parameters stored in Flash, send a factory reset command in either NMEA command:

\$PSRF104,0,0,0,0,0,0,12,8[*CS] <cr><lf>

Or the SiRF Binary command Initialize Data Source command with the Factory Reset flag:

Example: A0 A2 00 19 80 — Start Sequence and Payload Length

00 94 B0 B3—Message Checksum and End SequenceDemonstration of How to Save to Flash

The simplest method of setting and saving parameters to Flash is to use the SiRFDemo program provided with the Jupiter series development kit. To do this you will need a development unit with the appropriate Jupiter 32 or 30 adaptor board installed that is loaded with flash software version 2.0 or later and SiRFDemo installed on your PC. See SiRFDemo User's Guide for instructions on using SiRFDemo.

Verifying presence of Write to Flash Feature

The development unit baud rate depends on the GPS module installed. Refer to the module datasheet for the default value or try 9600 baud as a starting point. The actual baud rate can also be determined by experimentation. The Synchronize Protocol & Baud Rate feature in SiRFDemo is not available.

When the development unit is first turned on, the first few strings contain the software version information. Verify that the device is programmed with the correct software version or the write-to-flash feature will not work. See Figure 4.

Alternatively, select Poll then Software Version from the main menu.

In the example below, the version for Jupiter 30 is 2.0.

📉 Debug View	
\$PSRFTXT,CLK: 96250	
SPSRFTXT, CHNL: 12	
\$PSRFTXT,Baud rate: 9600	
\$PSRFTXT,NAVMAN SW/Version: Jupiter30 v2.0 build 1 (S3)	
\$GPGGA,235948.047,,(\$20,M,0.0,M,,0000*54	
\$GPGLL,,,,,235948.047,√*¥A	
\$GPGSA,A,1,*1E	
GPGSV,3,1,12,20,00,000,,10,00,000,,25,00,000,,27,00,000,*79	
GPGSV,3,2,12,03,00,000,,07,00,000,,15,00,000,,02,00,000,×79	
GPGSV,3,3,12,16,00,000,,28,00,000,,26,00,000,,29,00,000,*78	
\$GPRMC,235948.047,V,240905,.*27	
SGPVTG,,T,,M,,N,,K*4E	
\$GPGGA,235949.044,,,,,0,00,,,M,0.0,M,,0000*56	
\$GPGLL,,,,,235949.044,V*18	
\$GPGSA,A,1,*1E	
\$GPGSV,3,1,12,20,00,000,,10,00,000,,25,00,000,,27,00,000,*79	

Figure 2 - Verify Flash software version

If the data streams by too quickly you can use the disconnect icon or the pause icon next to it to stop the output. The scroll bar in the Debug View window is also available to review the data history.

Changing Configuration Parameters

Changing configuration parameters is accomplished by using the appropriate SiRFDemo menu and entering the new value. Table 1 lists all the parameters that can be written to Flash with a description of where they can be found in SiRFDemo. All parameters except Datum can be set SiRF Binary mode and SiRFDemo.

Parameter	SiRFDemo Location	Sub Menu Location
Port A and B protocols, baud rates and frame formats	Action	Set UART Configuration
NMEA per-message output rates and checksums	Action	Switch to NMEA Protocol (Alternatively NMEA msg. 103)
SiRF Binary debug and raw tracker data output	Action	Initialize data source, select Snap start, select both Messages types
Datum	can be set only with NMEA command Select Datum (106). See Navman NMEA manual.	NA
Altitude hold mode, source and default	Navigation	Mode Mask (Altitude hold mode)
Degraded mode and timeout	Navigation	Mode Mask (Degraded mode)
DR timeout	Navigation	Mode Mask (Dead Reckoning)
DOP mode and GDOP/PDOP/ HDOP thresholds	Navigation	DOP mask
Elevation navigation mask	Navigation	Elevation mask
Power navigation mask	Navigation	Power mask
Static navigation mode	Navigation	Static navigation
Track smoothing mode	Navigation	Mode Mask
TricklePower mode, on time and interval	Action	Set Low Power
Push-to-Fix mode, period, maximum off and acquisition times	Action	Set Low Power
DGPS source	Navigation	DGPS source
SBAS default PRN	Navigation	SBAS control

Table 3 - Setting Parameters Using SiRFDemo

🙏 NAVMAN

Saving the Configuration Parameters to Flash

The changes to the parameters can be made permanent by writing them to Flash.

The parameters are written to Flash by selecting Transmit Serial Message from the Action menu.

The Write-to-Flash command is performed by using the appropriate NMEA or SiRF Binary command. The protocol wrapper determines the type of command that is sent.

The NMEA command written in the below example is PSRF198.

Send Data	
Specily in Hex (e.g. 55 AB 6D). Howe	ver, use text format for NMEA and None (ASCII)
Protocol Wrapper SiRF Binary NMEA (\$ <data>*ok\r\n)</data>	Load Save

Figure 3 - Writing changes to Flash

Reading the Configuration Parameters from Flash

The parameters that are stored in the GPS receiver are read by SiRFDemo and displayed as the actual parameters in Flash. No other intervention is required. The Poll menu contains commands for viewing some of the parameters. Default parameters are shown in the table below.

Parameter	Default Values
Port A and B protocols	NMEA - Press set defaults
Port A and B baud rates and frame formats	9600 baud
NMEA per-message output rates and checksums	Switch to NMEA - Press set defaults
SiRF Binary debug and raw tracker data output	Factory Reset, Initialize data in battery backup RAM
Datum	WGS84
Altitude hold mode, source and default	automatic, last computed altitude
Degraded mode and timeout	disabled; timeout: 30
DR timeout	5 seconds
DOP mode and GDOP/PDOP/HDOP thresholds	'Do not use'
Elevation navigation mask	5 degrees
Power navigation mask	12 CNO
Static navigation mode	Disabled
Track smoothing mode	Disabled
TricklePower mode, on time and interval	Update rate=1s, On time=200 ms, maximum on time=30 000, maximum search=300 000
Push-to-Fix mode, period, maximum off and acquisition times	Max acq time= 120000 ms Max off time= 30 000 ms
DGPS source, mode, timeout	None, Auto, 0 seconds
SBAS default PRN	SBAS PRN= enabled

Table 4 - Default Values

Selectable User Profiles

Overview

The purpose of this feature is to provide some typical application profiles which users can select through a simple NMEA message. These profiles are macro-like commands that modify parameters used for common applications. These profiles produce optimal navigation settings which conform specifically to an application's requirements. They can be then be saved using the Write to Flash feature. The new profile will not be written to flash automatically.

Available Profiles and the parameters modified:

Default - A general profile that balances the needs of most applications. (see Note on restoring)

- · Static Nav Off
- · Track Smoothing Off
- DR Timeout 5s
- · Degraded modes Off
- · All other parameters as per existing defaults

Automotive - Takes into consideration higher velocities with occasional stopping.

- Static Nav On
- Track Smoothing Off
- DR Timeout 0s
- · Degraded modes Off
- · All other parameters remain unchanged

Pedestrian - Takes into consideration slower velocities.

- Static Nav Off
- Track Smoothing On
- DR Timeout 0s
- · Degraded Modes Off
- · All other parameters remain unchanged

TricklePower - Power saving mode for battery applications. See Low Power Operating Modes Application Note LA000513

- Adaptive Trickle Power On, with 200ms On time, 20% Duty cycle (1Hz update)
- RMC and GGA messages every second, GSV one every 5s, all other NMEA messages off
- · Static Nav On
- DR Timeout 0s
- · Degraded Modes Off
- · All other parameters remain unchanged

NOTE: If the application requires extra NMEA messages, the baud rate should be increased to at least 38400 to keep power consumption low.

Push to Fix - Only performs a fix when requested. For use in special applications. See Low Power Operating Modes Application Note LA000513

· Push to Fix enabled with default settings

- Static Nav On
- · DR Timeout 0s
- · Degraded Modes Off
- · RMC, GGA and GSV messages every second, all other NMEA messages off
- · All other parameters remain unchanged

Command

The profiles will be selected by an NMEA command \$PSRF197, n, where *n* is the profile number:

- 1. Automotive
- 2. Pedestrian
- 3. TricklePower
- 4. Push to Fix

NOTE: The Default profile can only be selected through the Master Factory Reset command. This will restore ALL configurable parameters to their factory defaults as shown in Table 2.

After setting the profile, the receiver will respond on success with the message:

\$PTTK, CONFIG, SET, n

or \$PTTK, CONFIG, SET, ERROR on failure.

If the requested configuration does not exist, the receiver will respond with the message:

\$PTTK,NACK

NOTE: It is up to the user to configure the settings they want and write them to flash if the profile is to be saved.

© 2007 Navman NZ Ltd. All Rights Reserved.

Information in this document is provided in connection with Navman NZ Ltd. ('Navman') products. These materials are provided by Navman as a service to its customers and may be used for informational purposes only. Navman assumes no responsibility for errors or omissions in these materials. Navman may make changes to specifications and product descriptions at any time, without notice. Navman makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Navman's Terms and Conditions of Sale for such products, Navman assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED 'AS IS' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, RELATING TO SALE AND/OR USE OF NAVMAN PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MER-CHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. NAVMAN FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. NAVMAN SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITA-TION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Navman products are not intended for use in medical, lifesaving or life sustaining applications. Navman customers using or selling Navman products for use in such applications do so at their own risk and agree to fully indemnify Navman for any damages resulting from such improper use or sale. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners. Additional information, posted at www.navman.com, is incorporated by reference.

Reader response: Navman strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to tech.pubs@navman.com. For technical questions, contact your local Navman sales office or field applications engineer.

LA000266A © 2007 Navman NZ Ltd. All rights reserved. Proprietary information and specifications subject to change without notice.